
J. Fluid Mech. (2007), vol. 579, pp. 137–161. c© 2007 Cambridge University Press

doi:10.1017/S0022112007004818 Printed in the United Kingdom

137

Stability properties of forced wakes
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Thiria, Goujon-Durand & Wesfreid (J. Fluid Mech. vol. 560, 2006, p. 123), it was shown
that vortex shedding from a rotationally oscillating cylinder at moderate Reynolds
number can be characterized by the spatial coexistence of two distinct patterns, one
of which is related to the forcing frequency in the near wake and the other to a
frequency close to the natural one for the unforced case downstream of this locked
region. The existence and the modification of these wake characteristics were found
to be strongly affected by the frequency and the amplitude of the cylinder oscillation.
In this paper, a linear stability analysis of these forced regimes is performed, and
shows that the stability characteristics of such flows are governed by a strong mean
flow correction which is a function of the oscillation parameters. We also present
experiments on the spatial properties of the global mode and on the selection of
the vortex shedding frequency as a function of the forcing conditions for Re = 150.
Finally, we elucidate a diagram of locked and non-locked states, for a large range of
frequencies and amplitudes of the oscillation.

1. Introduction
Thiria, Goujon-Durand & Wesfreid (2006) investigated experimentally the flow

over a cylinder performing rotary oscillations at moderate Reynolds number. Under
forcing conditions, it was observed that vortices were shed at the forcing frequency
in the near wake and can merge downstream from each row to give a new pattern
similar to the one that can be observed for the unforced case. The wake dynamics
was found to be strongly affected by the forcing parameters (the frequency and the
amplitude of the cylinder oscillation). The far-wake region exhibits slightly different
dynamics of the fluctuations than observed in the free case. Similar observations have
been made by Lu & Sato (1996), Chou (1997) and Choi, Choi & Kang (2002) in
numerical simulations in the case of a rotary oscillating cylinder, but also in the case
of a translating oscillating cylinder as in the experiments performed by Nishihara,
Kanedo & Watanabe (2005). However, Thiria et al. (2006) were only focusing on the
relation between the wake pattern and the drag on the cylinder and none of the other
studies on this subject addressed the mechanism responsible for the modification of
the wake dynamics.

The stability properties of bluff body wakes have been extensively investigated
in recent years. It is well known that when the Reynolds number is bigger than
Re = 47, the wake of a cylindrical cylinder undergoes self-sustained oscillations; this
is the Bénard–von Kàrmàn instability. In this supercritical regime, the properties of
these synchronized open flows are strongly dependent on the Reynolds number.
Experimentally, the relationship between the Strouhal frequency of the vortex
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shedding and the Reynolds number was established long ago by Camichel, Dupin &
Teissié-Solier (1927) and Bénard (1928) and more recently by, for example, Provansal,
Mathis & Boyer (1987) and Williamson (1988). Goujon-Durand, Jenffer & Wesfreid
(1994), Zielinska & Wesfreid (1995) and Wesfreid, Goujon-Durand & Zielinska (1996)
investigated the spatial shape of this global structure and established scaling laws for
the amplitude and location of the maximum of the global mode for a large range of
Reynolds number above the threshold.

From a theoretical point of view, the study of the global dynamics of synchronized
spatially developing flows is based on the analysis of the complex local absolute
frequency ω0 which depends on the streamwise coordinate. For normal modes
growing proportionally to e−i(ω0t−k0x), where ω0 and k0 are respectively the complex
absolute frequency and complex absolute wavenumber with zero group velocity,
if Im(ω0) = ω0i > 0 the flow is said to be locally absolutely unstable (AU); the
perturbations grow in situ and overrun the whole flow. On the other hand, if
Im(ω0) =ω0i < 0, the flow is considered locally convectively unstable (CU); the
perturbations are amplified but advected by the oncoming flow. It is now well
known that open flows giving rise to self-sustained (or global) oscillations exhibit a
finite region of absolute instability near the bluff body and are convectively unstable
downstream (for x >xac). The relationship between global wake frequency and local
absolute instability is then determinated from local resonance principles. Koch (1985)
conjectured that the local resonance responsible for the frequency adopted by the
whole flow prevails at the downstream location xac (ωac =ω0(xac)) while Pierrehumbert
(1984) proposed that this resonance is dictated by the local eigenvalue with the
maximum imaginary part (located at xm). More recently, a linear criterion for the
selection of global frequencies based on local absolute stability characteristics of the
flow has been given by Chomaz, Huerre & Redekopp (1991) and Le Dizes et al. (1996).
The local frequency prevailing for the whole wake is given by a saddle-point condition
based on the analytic continuation of ω0(x) in the x-plane given by ωs =ω0(xs) with
dω0/dx(xs) = 0.

These criteria are all based on local properties of the flow, but one can note
however that the global frequency can also be calculated by perturbing the whole
two-dimensional flow field directly (see for example Barkley, Gomes & Henderson
2002). While these methods can provide very accurate results in open flows, they
cannot give local stability properties which are of great importance for the physical
understanding of such flows.

1.1. Stability analysis and forced flow

Stability analysis requires knowledge of the basic state of the flow being considered.
In our case (the cylinder performs rotary oscillations) and more generally for forced
systems, the basic flow is modified by the non-stationary characteristics of the forcing.

As was noted by Pier (2002), the linear global frequencies ωac, ωmax and ωs and ωca

obtained from the basic flow analysis cannot account for the real global frequency
selected by the wake. From his results (see figure 1), the criterion giving a good
frequency prediction for the fully developed vortex street was obtained from a
stability analysis applied on the time-averaged mean flow instead of the unperturbed
basic flow, using the frequency ωs . This is not the first time that a linear criterion
applied to the mean flow has turned out to be the best for the prediction of the
actual global frequency in bluff body wakes (see Mattingly & Criminale 1972 or
Triantafyllou, Triantafyllou & Chryssostomidis 1986). More recently, Hammond &
Redekopp (1997), found in the case of the wake of a blunt-edged plate, that the
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Figure 1. Evolution of the global selected frequency in the wake of a circular cylinder as
a function of the Reynolds number. �, Frequency obtained by direct numerical simulation
(DNS); —, experimental results (from Williamson 1988). Results (ωs) represented by � have
been obtained by applying the linear criterion xs on the time-averaged mean flow. �, The same
calculation applied to the unperturbed basic flow. From Pier (2002)

saddle-point theory applied to the mean flow provided an accurate prediction of the
frequency selected by the system.

But even though the averaged mean flow does not obey the stationary Navier–
Stokes equation, it seems that it takes into account the nonlinear mean flow correction
and plays the role of a new basic state for the development of linear modes, as was
conjectured by Thiria (2005), and discussed in Thiria, Bouchet & Wesfreid (2007a)
and Barkley (2006). In this paper, we study the mean flow corrections induced by the
forcing. Once these mean flow modifications are obtained, a stability analysis of such
forced flows will be performed using experimentally measured velocity fields of forced
wakes. From this linear stability analysis, we obtain, for the first time, the phase
diagram of locked states, and we can establish the boundaries between the regions of
global stability and instability. Thus, we contribute to the physical understanding of
forced flows and confirm the fundamental role played by the mean flow in the wake
stability properties.

2. Experimental set-up
2.1. Description of the hydrodynamic tunnel and experimental method

The experiments have been performed in a low-velocity water tunnel with a
10 cm × 10 cm cross-section. The typical velocity is 3 cm s−1 The circular cylinder
has a diameter d = 0.5 cm which corresponds for our typical velocity U0 to a
Reynolds number Re = U0d/ν =150. This cylinder is mounted on a submerged
electrical computer-controlled motor. A detailed description of this set-up can be
found in Thiria et al. (2006).

The wake visualizations were obtained in the (x, y)-plane using laser
induced fluorescence (LIF) (see figure 2). Velocity fields in the near wake
(−1d <x < 8d, −3d < y < 3d) in the same (x, y)-plane were obtained using standard
particle image velocimetry (PIV) by LaVision using a 16 × 16 interrogation window
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Figure 2. Illustration of the hydrodynamic tunnel test section.

Figure 4. Typical flow visualization obtained in the hydrodynamic tunnel under forcing
condition A = 2, ff /f0 = 4. The vorticies are shed at the forcing frequency on a characteristic
‘lock-in’ length in the near wake and merge from each row to give a new pattern similar to
that observed for the unforced case.

with an overlap of 50 % which gives a spatial resolution of 22 360 velocity vectors
for each field obtained.

In order to get precise measurements of the spectral content of forced wakes, a
hot-film probe by DANTEC was introduced into the tunnel (figure 2). The probe is
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Figure 3. Control parameters of the oscillating motion.

free to move in the longitudinal direction x and to different streamwise locations.
The hot film is placed in such a way that it measures the velocity modulus in the
(x, y)-plane. The evolution of the spectral content can thus be followed as we move
downstream of the cylinder. The sampling frequency is 100 Hz which was sufficient
for the different dynamics observed.

2.2. Control parameters

The cylinder is subjected to oscillations following the law (see figure 3)

θ(t) = θ0 cos(ωf t),

where ωf is the angular forcing frequency

ωf = 2πff .

The forcing amplitude is defined as

A = Vmax/U0,

where Vmax =(d/2)θ0ωf is the maximal azimuthal velocity of the forced oscillation.
We define f0 as the global frequency of the unforced wake at the same Reynolds
number. There are only two non-dimensional forcing parameters, which are defined
by A and the ratio ff /f0. An alternative pair of non-dimensional parameters can
be used, namely the ratio of the forcing frequencies and the maximal azimuthal
displacement s of the cylinder during the oscillation (s = 1

2
dθ0 =AU0/ωf fr ). For this

Reynolds number, the natural frequency of the vortex shedding measured with the
hot film was 0.98 Hz.

3. Forced wake characteristics
We summarize here the global characteristics of the forced flows obtained when the

cylinder describes rotary oscillations. A complete experimental study of the different
flow regimes and their evolution as a function of the forcing parameters can be found
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Figure 5. Fourier spectra of the velocity fluctuations as a function of the downstream
distance from the cylinder. The forcing conditions are ff /f0 = 3.5, A = 2 (non-locked regime).

in Thiria (2005) and Thiria et al. (2006)†. As can be seen in figure 4 (see page 140),
the forced wake presents a characteristic pattern: the vortices are first shed at the
forcing frequency on a characteristic ‘lock-in’ length in the near wake, which grows
with the forcing amplitude A and decreases with the forcing frequency. Downstream
from this lock-in region the vortices from each row can merge to give a new pattern
similar to the one that can observed for the unforced case. Two different dynamical
regimes, which are described in the next section, can be distinguished as a function
of the forcing parameters.

3.1. Spectra

Figure 5 shows the spatial evolution of the Fourier spectra of the velocity fluctuations,
obtained at y =0 as a function of the streamwise coordinate. One can observe that
fluctuations coming from the forcing (i.e. in the near wake) decrease quickly. The re-
emerging wake exhibits self-sustained oscillations with a sharp front and dissipation
downstream. Such typical flow dynamics can be observed for a large range of forcing
parameters and the dynamics of the near and far wakes depends strongly on them.
This case can be described as non-locked (i.e. only a limited part of the wake
fluctuations are synchronized with the forcing frequency.). This kind of spectrum
corresponds to the streaklines displayed in figure 4. However, one can distinguish
another forced regime, which differs from the ones described above. This regime,
displayed in figure 6, can be obtained for low forcing frequencies or/and relatively
high amplitudes. This case can be considered as a locked regime.

As seen in figure 6, the peak related to the forcing frequency decreases quickly
in the near wake without any re-emerging pattern and no characteristic far-wake
frequency.

Thus, under forcing the wake can behaves in two distinct ways. In § 4, after studying
the stability of the forced wakes, we predict their properties as a function of the forcing
parameters.

† Movies of streaklines visualizations for each pair of forcing parameters used in that paper
(0.5< ff /f0 < 6 and 1< A < 10) can be found at http://ftp.espci.fr/shadow/thiriaJFM05.
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Figure 6. Fourier spectra of the velocity fluctuations as a function of the downstream
distance from the cylinder. The forcing conditions are ff /f0 = 3.5, A = 4 (locked regime).

3.2. Mean flow correction

In previous works, we were interested in the study of the mean (temporally averaged)
flow modifications (or the zeroth mode) induced by the presence of fluctuations. For
unforced flows, we have studied the spatial distribution of the global mode and also
the effect on the recirculation length (Zielinska et al. 1997) and the drag (Protas &
Wesfreid 2002). In this paper, especially in § 5, we present for the first time, a full
experimental study of the evolution of the mean flow as a function of the forcing
parameters. The experimental mean fields were obtained by PIV measurements of
the near wake of the cylinder using a measurement window between x = 0 and
x = 8d for different forcing conditions. The mean flow was obtained by averaging
200 instantaneous velocity fields. This number of measured fields, taken at random
sampling, was found to be sufficient for the convergence of the averaged field. One
of these typical velocity fields is displayed in figure 7 for the unforced case.

4. Stability analysis
In order to understand the local properties of such flows, we performed a stability

analysis of the wakes modified by the forcing. Linear stability properties of the
measured mean flow were determined by numerical solution of the inviscid Orr–
Sommerfeld or Rayleigh equation (see Drazin & Reid 1981) for the streamfunction

Ψ (x, y, t) =

∫ y

0

U (η) dη + ψ(x, y, t),

where ψ(x, y, t) = Re{φ(y)ei(kx−wt)}:

(kU (y) − ω)(φ′′ − k2φ) − kU ′′(y)φ = 0, (4.1)

with boundary conditions φ(−∞) = φ(+∞) = 0, and where U is the local velocity
profile depending on the transverse coordinate y, k and ω are respectively the complex
wavenumber and the complex pulsation of the perturbation and ψ is the associated
even function.
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Figure 8. Results of the stability calculation for two local profiles at (a) x = 1d and (b) x = 2.2d
taken from the mean flow field displayed in figure 7. The eigenvalue ω0 is identified at the
edge of a cusp-like trajectory. Thus, if the imaginary part of ω0 lies above the real axis, the
flow is said to be locally absolutely unstable while it is said to be locally convectively unstable
if ω0i < 0.

Equation (4.1) defines an eigenvalue problem and yields the dispersion relation

D(ω, k) = 0 (4.2)

relating to complex values of ω and k. The absolute frequency ω0 can be computed
where k0 is specified by requiring the group velocity to vanish:(

∂ω

∂k

)
k0

= 0. (4.3)

The modes are discretized using Chebyshev-collocation points, and a matrix-
eigenvalue problem is recovered which is solved numerically for the dispersion relation.
The solutions of the eigenvalue were found following the cusp map procedure described
in Kupfer, Bers & Ram (1987) or Schmid & Henningson (2001). By solving ω(k), the
singularity ω0 is then identified at the edge of a typical ‘cusp’-like trajectory. Thus,
if the imaginary part of ω0 lies above the real axis (figure 8a), the flow is said to be
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Figure 9. Evolution of the imaginary (ω0i) and real part (ω0r ) (growth rate and frequency) of
the local absolute frequency as a function of the longitudinal coordinate x for the unforced
wake at Re = 150. The vertical dashed line gives the position xac (transition from local absolute
instability (AU) to local convective instability (CU)) and the localization of xm (maximum
growth rate).

locally absolutely unstable, while it is said to be locally convectively unstable if ω0i < 0
as shown in figure 8(b). We investigated the local stability of the averaged flow as has
already been successfully applied to an averaged mean flow by Triantafyllou et al.
(1986) or Hammond & Redekopp (1997) for the same range of Reynolds numbers.

The procedure is repeated for each profile over the whole explored flow field (from
x = 0 to x =8d with step of 	x = 0.05d). In figure 9, we display the results of this
calculation applied to the mean flow of the unforced case (figure 7). This figure
shows the imaginary part (absolute growth rate) and real part (absolute frequency)
of the non-dimensionalized ω0 as a function of the x-location. As for each flow fields,
U (x, y) has been divided by U0 and the transverse coordinate y by d , and the relation
between ω0r and frequency can be easily determined from the Strouhal number by
ω0r = 2πfxd/U0 = 2πSt where fx indicates the local frequency at location x.

As previously noted, the wake exhibits a finite region of absolute instability (ω0i > 0,
for x <xac � 2d) just behind the cylinder, closely following the reverse-flow region
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Figure 10. Interpolation of the data from figure 9 by a rational function P n(x)/Qn(x)
with n= 8.

f (xac) f (xm) f (xs) fexp

1.06Hz 1.03Hz 0.97 Hz 0.98Hz

Table 1. Comparison of theoretical predicted linear frequencies with experimental
measurements at Re = 150.

(cf. figure 7). Farther away, the instability becomes a convective one (ω0i < 0 after
x >xac). The results for the absolute growth rate displayed in figure 9 show that
the wake is immediately absolutely unstable behind the body and does not exhibit a
transition point from convective to absolute instability. The frequency selection criteria
discussed in § 1 can be taken into account and compared to the experimental measured
frequency. While the ωac and ωmax criteria can be read directly on figure 9, the saddle
point criterion requires the analytical continuation of the complex absolute frequencies
ω0(x) in the complex x-plane. Following Cooper & Crighton (2000), the computed
data from the stability calculation displayed in figure 9 have been interpolated by
a rational function P n(x)/Qn(x), where P n(x) and Qn(x) are polynomials of degree
at most n (see figure 10). The singularity is removed by varying the imaginary part
xi until a cusp formation corresponding to the point where dω/dx = 0 is verified.
Figure 11 displays the localization of the saddle point of the dispersion relation in
the complex x-plane, calculated from the experimental mean flow of the unforced
case (figure 7).

The different theoretically predicted frequencies (i.e global frequencies obtained at
x = xm, x = xac or x = xs) as well as the real measured global frequency of the wake are
summarized in table 1. The three linear criteria give values of the global frequencies
close to those measured experimentally. However, the theoretical frequency ωs given by
the saddle-point criterion seems to display better agreement: the predicted frequency
is f (xs) = 0.97 Hz while the measured frequency is 0.98 Hz.
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Figure 11. Localization of the saddle point of the dispersion relation in the complex x-plane
in the unforced case.

This result confirms that the use of an inviscid equation applied to time-averaged
mean velocity profiles is sufficient to determine the local properties of the flow as was
already observed by Triantafyllou et al. (1986) and Hammond & Redekopp (1997); it
also confirms that the linear criterion proposed by Chomaz et al. (1991) is sufficient
to predict the real global frequency from these local characteristics.

5. Mean flow modification and stability properties for forced regimes
We have seen that the stability analysis applied on to unforced case was able to

bring out the local and global properties of the wake. Thus, the same procedure will be
applied to the same wake under forcing conditions in order to study the modification
of these properties as a function of the forcing parameters. We explored the forced
regimes in the range of forcing parameters 0<A< 5 and 0 <ff /f0 < 5. The forcing
frequency ff /f0 = 5 was found by Thiria et al. (2006) to be a regime with minimal
drag and where the modifications of the wakes characteristics were significant but
varying sufficiently slowly as a function of the forcing amplitude. Thus, this case will
be fully detailed first in the following section.

5.1. Forcing at ff /f0 = 5

Figure 12 (see page 144) displays the time-averaged mean flows (velocity modulus
as a function of space) for the forcing frequency ff /f0 = 5 as a function of the
forcing amplitude from A= 0 (unforced case) to A= 5. As can be observed, the mean
characteristics of the flow are strongly affected by the forcing conditions. The reverse
flow region, initially of length close to two cylinder diameters, starts to grow as we
increase the forcing amplitude. When A reaches higher values, the reverse flow region
becomes more difficult to detect since negative velocities seem to be absent in the
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Figure 13. Evolution of the spatial distribution of absolute growth rate ω0i as a function of
the forcing amplitude at the forcing frequency ff /f0 = 5. The first curve corresponds to the
uncontrolled case displayed in figure 7.

near wake of the cylinder. (Experimental results show that for sufficiently strong
forcing amplitude, effectively no negative values of the velocity can be detected.
However, recent numerical results (Thiria, Bouchet & Wesfreid 2007b) appear to have
found such values.) However, this separated region (i.e. region of very weak velocity,
compared to the non-wake region) continues to grow. The typical width becomes
weaker as the forcing amplitude increases. These measurements confirm the effect
of the forcing on the mean flow perturbations, generated through the action of the
Reynolds stress.

We extended the stability analysis procedure used for the free case to the averaged
mean flows represented in figure 12. In the same way, the real and imaginary parts of
the complex local absolute frequency were obtained and both quantities are plotted
as a function of the longitudinal coordinate x in figures 13 and 14.

The stability properties of the forced wakes as a function of the amplitude A of the
forcing are significantly different. The absolutely unstable region, initially of length
two cylinder diameters extends over four diameters for a forcing amplitude A= 5.
The evolution of this AU region is displayed in figure 15.

For A= 0 to 5, the AU region grows gradually spatially and the magnitude of the
absolute growth rate globally decreases with the forcing amplitude demonstrating a
more stable system. These observations are in agreement with Thiria et al. (2006)
who observed a strong decrease in the global fluctuation rate for the same forcing
configuration. For forcing amplitude A= 5, the length of the AU region begins to
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Table 2. Predicted frequency f (xs) as a function of the forcing amplitude.
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Figure 16. Global frequency selected by the wake as a function of the forcing amplitude A
for ff /f0 = 5. �, experimental hot-film measurements; �, theoretical prediction from linear
saddle-point criterion ωs .

reduce. This decrease, which seems to be sign of transition in the instability nature of
the wake, will be discussed later as it becomes clearer for the other forcing frequencies.

Nevertheless, for the forcing frequency ff /f0 = 5, the different cases studied
(0 < A < 5), all exhibit a finite AU region, characteristic of flows giving rise to
self-sustained oscillations. Since the linear stability analysis showed that the forced
wakes could give rise to a global mode, one can look for the selected global frequency.
In the same way as for the free case, the theoretical global frequency of the forced
flows was determinate by looking for the saddle point xs in the complex x-plane. The
results of the computation are displayed in table 2 and plotted in figure 16, to be
compared with experimental measurements of the global frequency performed with a
hot film, as explained in § 3.1. The theoretical prediction from the linear saddle-point
criterion appears to be of great accuracy since the difference between the theoretical
and experimental results does not exceed 5 %. The observed tendency is, for both the
theoretical and experimental situations, of a slight decrease of the global frequency
with the amplitude of the forcing.

Thus, the stability characteristics of these forced wakes are strongly dependent on
the forcing amplitude. The cylinder oscillation produces a mean flow correction which
is at the origin of the change in the dynamics of the wake. By modifying its mean
state, the local stability properties are also naturally modified. As a consequence, the
system selects a different global mode (thus a different global frequency) related to
this new mean state. For this forcing frequency, we have seen that the forced wakes
always selected a global mode whose characteristics depend on the forcing conditions.
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Figure 17. Evolution of the absolute growth rate ω0i as a function of the forcing amplitude
for a forcing frequency ff /f0 = 4. The first case corresponds to the uncontrolled flow displayed
in figure 7.

5.2. Forcing at ff /f0 = 4

As in the previous section for ff /f0 = 5, we obtained by PIV measurements the
time-averaged mean flows for ff /f0 = 4 and for A varying from 0 to 5 and used this
field as a base for the stability analysis. We discuss here only the results concerning
the distribution of the local stability properties of the flow. Figures 17 and 18 display
the results of the computation for both the real and imaginary part of the complex
absolute frequency ω0 as a function of the longitudinal coordinate x and the forcing
amplitude A.

This case exhibits a similar qualitative behaviour to that previously seen for
ff /f0 = 5. For an amplitude A= 1 the typical length of the AU region reaches a value
of more than 3.5d instead of 2.5d for the forcing frequency ff /f0 = 5 (see figure 15).
The predicted saddle-point frequency is lower for a given amplitude than in the
results for ff /f0 = 5. The correction of the mean flow seems to be more important as
a function of the forcing amplitude as the forcing frequency is lower.

However, while the flow is able to develop global modes for the range of the
amplitude of the oscillation 0<A � 3 (i.e. there exists an AU/CU transition) the cases
for higher values of the forcing amplitude exhibit a completely different behaviour.

As can be observed for the cases ff /f0 = 4, A> 2 of figure 17, the quasi-totality of
the spatial distribution of the local absolute growth rate ω0i is negative. These flows
are globally linearly stable and behave just as amplifiers of external disturbances. In
addition, the hot-wire measurements confirm that certain forcing conditions launch
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Figure 18. Evolution of the absolute pulsation ω0r as a function of the forcing amplitude for
a forcing frequency ff /f0 = 4. The first case corresponds to the uncontrolled flow displayed in
figure 7.

this transition from global instability to convective instability (CI). Figure 19 shows
two spectra of the fluctuating velocity measured from the axis at the location (y = 0.5d)
for the two cases of figure 17 outside the lock-in region (i.e where the wake fluctuations
do not contain the forcing frequency). The first spectrum has been measured for the
forcing conditions ff /f0 = 4, A= 2. The frequency distribution clearly shows the
synchronized nature of the flow. The two peaks corresponding to the fundamental
mode of the perturbation (f = 0.98 Hz) and its first harmonic are characteristic of
self-sustained oscillations. These experiments correspond to the theoretical predictions
of figure 17. The case ff /f0 = 4, A= 4, taken after absolute/convective transition,
exhibits a large band of amplified frequencies as can be observed for convective
instabilities. Note that the first peak near 0.8 − 0.9 Hz can be interpreted as the
unstable convective frequency f (xs) obtained from the linear analysis in the globally
stable region (see figure 18).

5.3. Discussion

Since the behaviour for the forcing frequency ff /f0 = 4 was different from that
observed for ff /f0 = 5, we generalized the stability analysis for other forcing
frequencies ff /f0 = 3, 2, 1, 0.5 as a function of the forcing amplitude A. The results
of the stability analysis in the (A, ff /f0)-plane are summarized in figure 20: the
circles (�) denote a globally stable flow, while the stars (
) denote a globally unstable
flow (i.e. a flow supporting a global mode). The lozenges (�) indicate the transition
between these two states.
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Figure 19. Frequency spectra obtained by hot-film measurements outside the lock-in region
(i.e. where the wake fluctuations do not contain the forcing frequency): (a) f/f0 = 4, A = 2, (b)
f/f0 = 4, A = 4.

The lower the forcing frequency, the sooner the transition from global instability
to convective instability occurs, except in the subharmonic forcing case where the
transition point starts to grow again with the forcing amplitude. For the forcing
frequency ff /f0 = 1, the flow is globally stable as soon as the cylinder begins its
motion. This point has not been verified, but with regard to the evolution of the
transition point as a function of the forcing frequency, we concluded that the transition
GI/GS (global stability to instability) takes place closer to A= 0 than to A= 1.
Nevertheless, the error bars in figure 20 testify to the uncertainly of this transition
detection. According to these results, the existence of a global mode in open flows
under forcing conditions in the supercritical regime is not intrinsic and depends
directly on the forcing parameters.
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Figure 20. Predicted global stability properties of forced wakes in the (A, ff /f0)-plane: �,
globally stable flow; 
, globally unstable flow; �, the transition between these two states,
corresponding to a critical value of the forcing amplitude Ac , for each forcing frequency. In
the globally unstable region, the symbols enclosed by � correspond to the forcing cases on
which a study of the spatial structure of the global mode have been performed.

It is important to note that the boundary between global and convective instability
displayed in figure 20 closely follows the curve delimiting the ‘lock-on’ and ‘no lock-on’
states in earlier works concerning the behaviour of the lift fluctuations of a circular
cylinder in oscillation. Baek & Sung (2000), Baek, Lee & Sung (2001) and Cheng,
Chew & Luo (2001), in a similar configuration to the one in this paper, established
precisely numerically the two different regimes existing for the wake under forcing
conditions. These curve shows a continuous behaviour. The ‘lock-on’ state describes
lift fluctuations (i.e. the footprint of all the fluctuations in the wake, (see Saffman 1992
or Protas & Wesfreid 2003), containing only the forcing frequency. Conversely, the ‘no
lock-on’ state indicates a more complex frequency content that includes the forcing
frequency and a frequency linked to the far-wake instability. While the boundary
between ‘lock-on’ and ‘no lock-on’ was well defined in previous works, the physical
mechanisms responsible for this transition are not clear. According to our results
obtained from a stability analysis of the mean forced flow, this behaviour can now
be fully interpreted from the transition exhibited in figure 20. When the forced wake
supports a global mode, a second characteristic frequency emerges and the flow can
be described as ‘no lock-on’. The ‘lock-on’ state is reached for forcing parameters that
trigger the transition to convective instability. Since no precise frequency due to the
wake instability can be observed, only the forcing frequency clearly appears in the
frequency spectrum.

This is an important result, which explains the locking diagram in terms of stability
properties. The details of the transition displayed in figure 20 will be discussed in
detail in a forthcoming paper.

Nevertheless, the properties of these global modes, when they exist, are now defined
and are determined by the mean flow correction. The spatial structure of these modes
and its evolution as a function of the forcing parameters are developed in the next
section.
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Figure 21. Shape of the global mode for the different forcing conditions ff /f0 = 5, A =1;
ff /f0 = 5, A = 2; ff /f0 = 4, A = 1 and ff /f0 = 3, A = 1 at Re= 150. The case with no forcing
has been added. These values were obtained by measuring the peak to peak value of the
fluctuating part of the x component of the velocity, at y = d . These forced cases correspond to
the points denoted by (�) in figure 20.

6. Global mode structure
It is known that in bluff body wakes, the spatial envelope of the coherent oscillation

described here is strongly inhomogeneous. The form of the global modes and their
dependence on the Reynolds number were investigated by Goujon-Durand et al.
(1994) and Zielinska & Wesfreid (1995) for triangular bodies and by Wesfreid
et al. (1996) for circular bodies. They found that the maximum amplitude ρmax of
the oscillation as well as the correlation length xmax (i.e. the longitudinal position
corresponding to ρmax) followed scaling laws above the threshold as in other
hydrodynamical instabilities (Wesfreid et al. 1978). The amplitude and the position
of the maximum of these modes then scale as

ρmax ∼ (Re − Rec)
1/2, (6.1)

xmax ∼ (Re − Rec)
−1/2. (6.2)

The global-mode form, as well as the scaling laws, are described by a Ginzburg–
Landau model (see Chomaz 2005). (This spatial downstream envelope is sometimes
described as the perturbation eigenfunction in the flow direction.)

The flow behind a circular cylinder is distorted by a strong nonlinear mean flow
correction generated by the presence of fluctuations in the wake. The reverse-flow
region, which is a footprint of the mean flow and which initially grows linearly with Re

in the subcritical regime, starts to decrease, particularly as (Re − Rec) increases above
the threshold (see Zielinska et al. 1997). This distortion changes with the intensity of
the quadratic Reynolds stress of the fluctuations.

6.1. Spatial structure of global modes in forced regimes

The shape of the global modes, corresponding to the uncontrolled case (or free
case) and the forced cases ff /f0 = 5, A= 1; ff /f0 = 5, A= 2; ff /f0 = 4, A= 1 and
ff /f0 = 3, A= 1, is displayed in figure 21; the corresponding mean flows are shown
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Figure 22. Mean flows corresponding to the envelopes displayed in figure 21. As can be seen,
the reverse-flow region grows as the magnitude of the instability decreases, showing that the
flow tends to return to its basic state.

in figure 22. As we explained in § 2, the mean spatial structures are obtained from
PIV measurements computing the r.m.s. fields from 200 instantaneous velocity fields
for each forcing condition.

As done by Wesfreid et al. (1996) for natural vortex shedding, the global mode
shapes, or fluctuation envelopes, were obtained from measurements of the peak to
peak value of the longitudinal x component of the fluctuating velocity as a function
of the longitudinal coordinate, taken at y = ymax (i.e. the position of the maximum of
fluctuation vx). The value of ymax was found to be nearly constant as a function of
the forcing parameters and equal to d .

The global mode shape characteristics are strongly dependent on the forcing
parameters. The closer to the transition GS/GI the forced flow is (i.e. to the neutral
(or critical) curve of figure 20), the greater the decrease of the amplitude of the
global mode and the further the front of this shape is pushed downstream. This
important observation gives an indication that an effective control parameter (and
a correlated growth rate) of instability decreases approaching this line. According
to our previous work, each global mode shape was renormalized by its maximum
amplitude ρmax and its corresponding longitudinal position in the wake xmax. This is
plotted in figure 23 and we can observe that the normalized shapes can be considered
self-similar, suggesting that scaling laws also exist for forced global modes in the
same way as for natural wakes. Indeed, we can consider that the growth rate of the
global instability changes with the forcing via the modification of the mean flow. (In
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a recent numerical work Thiria et al. (2007b) showed that, in the same framework
(a cylinder performing rotary oscillations at Re =150), ρmax ∼ 1/xmax, as in natural
wakes.)

On the other hand, it is clear from figure 23, that this analysis only applies to the
wake envelope representing the global mode. This analysis excludes the amplitude
of the near wake, which is the footprint of the flapping due to the oscillating
cylinder. Indeed, the fluctuations follow the boundary conditions Vx(x = 0) = Vp and
Vx(→ ∞) = 0, where Vp is proportional to the forcing amplitude. We concentrated our
study on the cases below the critical curve delimitating the lock – on/no – lock – on
transition showed in figure 20 (i.e. where a global mode exists).

Note that not all the cases previously analysed were used to study the scaling of
the spatial modes. This is due to the high spatial resolution of the experimental fields
required for the stability analysis, which, for strong forcing, makes the localization of
the global mode shape maximum outside the measurement window impossible.

Finally, it appears that the selection of a global mode for flow under forcing
conditions is of the same nature as those selected in the natural case. The difference is
that the bifurcation is not triggered by the same control parameter. For greater clarity,
this principle is illustrated in figure 24. The length of the reverse-flow region Lr , which
is the footprint of the mean state, is plotted as a function of the Reynolds number. In
the classic case of the flow behind an obstacle, which can be followed from left to right
in figure 24, Lr grows linearly with Re in the stable region, located on the left of Rec.
When Re > Rec, the flow becomes unstable, Lr decreases as a consequence of the mean
flow modification (Zielinska et al. 1997), and a global mode is selected. Its frequency
is then determined linearly by its mean state and its spatial properties are dictated by
the scaling laws given in relations (6.1) and (6.2). Under forcing conditions, the mean
flow is corrected, the new state then selects a new mode and the bifurcation can be
seen this time from up to down. The different forced states with global instability (or
no – lock – on state) are distributed on a vertical line (for Re >Rec).

7. Discussion and conclusion
We have seen that a complete linear stability analysis in the parallel approximation

applied to mean averaged measured flows can account for the stability properties of
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Figure 24. Illustration of the possible bifurcations which can occur for a cylinder under
forcing conditions. The vertical line, for Re >Rec is explored when the forcing A goes from 0
(lower branch) to the critical value Ac given by the transition line displayed in figure 20.

wakes under forcing conditions. Until now, the fact that the mean state contains all
the flow properties had not been fully established. Our results point clarified this and
suggest strongly that the mean flow is the flow that should be considered to give a
good description of such complex systems. By adopting the point of view that this
modified mean flow plays the role of a new basic state, a linear stability analysis then
becomes a powerful tool since it is now possible to understand the dynamic of forced
wakes.

Amplitude equations such as the Ginzburg–Landau or Stuart–Landau models
which give a good description of the wake dynamics near the threshold could be
extended to forced wakes by taking into account the mean flow correction induced by
the forcing. Corrections to those models had been already studied in other physical
situations such as for the Rayleigh–Bénard instability by Siggia & Zippelius (1981)
and Zippelius & Siggia (1983). They introduced an additional term in the Ginzburg–
Landau equation due to the existence of a stationary mode generated by a nearly
uniform lateral velocity induced by the curvature of the rolls destabilizing the pattern
further via the three-dimensional vorticity. This correction was recently introduced
in studies of wakes by Noack et al. (2003) in order to modify the POD models by
coupling the typical Landau model to a second equation for the zeroth mode.
Thus, in order to incorporate the modification of the growth rate due to the forcing,
a system of coupled equations can be written in the following form:

da

dt
= (γ + iωI )a − (cr + ici)|a|2a + (βr + iβi)ab,

db

dt
= −σb + F (|a|2, A, ff ),

⎫⎪⎬
⎪⎭ (7.1)

where a is here the complex amplitude of the perturbation and γ , ωI , ci , cr and σ

are real coefficients; ωI would then be the linear frequency selected at the critical
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state and which would be a priori dependent on the critical forcing parameters (i.e.
parameters corresponding to the critical line GI/GS displayed in figure 20).

The equation for b is that of the mean flow correction generated by the forcing,
here depending on the variation of the square of the perturbation amplitude between
the controlled and uncontrolled case and the forcing parameters, with F = 0 when
A= ff =0. This equation is coupled to those used for the free wake (see for example
Provansal et al. 1987), and so a new term (βr + iβi)ab appears, which is proportional
to |a2|a in the fully developed case and which modifies the linear growth rate. Such a
system could, a priori, account for the wake dynamics of a cylinder performing rotary
oscillation, which is consistent with our experimental results, and more generally for
forced open flows. The consequences of these conjectures will be developed in future
studies.
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